Kategorie: prediktive maintenance

Wartungspläne-Vorbeugende Instandhaltung braucht nachhaltige Konzepte

Wartungspläne-Vorbeugende Instandhaltung braucht nachhaltige Konzepte

Wartungen und Wartungspläne – vieles wird unter diesem Sammelbegriff abgelegt und jeder im Unternehmen definiert es anders.Wenn eine Maschine ausfällt bekommen die Instandhalter oft diesen Satz gesagt:Aber wie konnte das passieren das die Maschine ausfällt?, ihr habt doch die Wartung gemacht!!! Doch was genau verstehen die verschiedenen Abteilungen eines Unternehmen unter dem Begriff Wartung?

Diese Frage läßt sich nur beantworten, wenn die Strategie der Instandhaltung und der Begriff Wartungen und Wartungsplan klar definiert sind.

  • Reaktive Instandhaltung
  • Vorbeugende Instandhaltung
  • Zustandsorientierte Instandhaltung
  • Wissenorientierte Instandhaltung

Nur leider ist eines der gravierendsten Probleme für eine Instandhaltungsstrategie das Management und deren fehlendes Wissen um eine funktionierende Organisation der Instandhaltung.

Zitat aus dem VDI Leitfaden Qualifizierung in der Instandhaltung : Die Instandhaltung spiegelt als wichtiger Bedarfsträger von Unternehmensressourcen die eigentliche Strategie des Unternehmens, die Produktionsstrategie. Die Bearbeitung von Instandhaltungsaufgaben erfordert Kompetenzen, die ermittelt und den Einheiten der Organisation und ihren Einheiten zugeordnet werden kann.

Diese Kompetenzen und Qualifikationen werden in einer Qualimatrix beschrieben und dokumentiert, die Anforderungen der Produktion und des Managements an die Instandhaltung werden in einer Funktionsbeschreibung dokumentiert. Und im Haus der Instandhaltung bildet das Personal das Fundament, die Basis auf der alles andere aufbaut und weiter geführt wird. Eine Instandhaltung steht und fällt mit der Qualifikation, dem Kenntnißstand und der Motivation der Mitarbeiter.

Die einzelnen Arbeitsplätze und Funktionen werden in einem Organisationshandbuch der Instandhaltung dokumentiert.

Das Management beeinflusst die Instandhaltung und gibt die Marschrichtung durch die Produktionsstrategie vor. Leider vergessen die Manager das allzuoft und machen dann die Instandhaltung für eine Organisation verantwortlich die sie selbst geschaffen haben.

Somit werden viele Instandhalter in eine Rolle gedrängt die mit der einer Feuerwehr oder mit Hochseilartisten ohne Sicherung zu vergleichen ist. Es werden immer nur reaktive Maßnahmen umgesetzt, dann unter Zeitdruck und Hektik welche das Management aufbaut und ausstrahlt, für nachhaltige Maßnahmen fehlt die Zeit, das Personal und letztendlich ein funktionierendes Konzept.

Dann werden schnell irgenwie KVP, Kaizen, Projekte oder TPM Versuche eingeführt, in der Hoffnung auf schnelle Heilung der Maschinen, stabile Laufzeiten und eine erstarkte Instandhaltung. Eine konsequente Umsetzung wird jedoch weder vom Management vorgelebt noch von den betroffenen Mitarbeitern allein forciert. Somit sind viele dieser Maßnahmen, welche am grünen Tisch von wenigen Managern für viele Mitarbeiter entschieden werden, von vornherein zum Scheitern verurteilt. Die gewollte Transformation scheitert an der schlechten Vorbereitung, der fehlenden Expertise und dem nicht einbeziehen der wichtigen Mitarbeiter, die Mitarbeiter, welche die Konsequenzen dieser einsamen Entscheidungen tragen und umsetzen müssen. Wenn die Mitarbeiter dann später ihre Einwendungen vorbringen, werden sie als Nörgler und Querulanten abgestempelt. Hätte man sie jedoch im Vorfeld mit in den Prozess und die Entscheidungen eingebunden, wären viele Projekte erfolgreicher verlaufen.

Wenn dann alles gescheitert ist und das Management keinen Rat mehr weiß, werden dann für ein Konzept schnell externe Berater angeheuert und um Rat gefragt. Und das, obwohl das Wissen um Veränderungen in den meisten Unternehmen vorhanden ist.

Wie erstellt man einen Wartungsplan?

Zuerst schaut man sich die Herstellerangaben im Maschinenordner bzw. der Bedienungsanleitung genau an.

Jeder Hersteller macht Angaben zu den verschiedenen Tätigkeiten der Wartung an seiner Maschine. Ist ihre Maschine Teil einer verketteten Anlage müssen sie die gesamten Wartungsangaben der Hersteller zusammentragen und harmonisieren. Das bedeutet sie müssen die zeitlichen Intervalle für nötige Wartungen vereinheitlichen auf einer Zeitachse.

Wenn sie alle Daten zusammengetragen haben beginnt ihre eigentliche Aufgabe, die Daten und Tätigkeiten zusammenzufassen in einen Wartungsplan.

Mittlerweile gibt es viele verschiedene Softwarelösungen, für die Betriebe die nicht mit SAP arbeiten. Nicht alle halten was sie versprechen, manche sind so kompliziert und unstrukturiert das es einen fast schon nervt damit zu arbeiten, es gibt durchaus gute und brauchbare Lösungen, die nicht immer sehr teuer sein müssen. So sind Wartman, Fwin, Prüfplaner, ultimo sehr gute IT Lösungen.

Und viele Instandhalter müssen, dank fehlender Software, sich ihre Wartungspläne selber per Excel oder Word selbst zusammenstellen.

 

Agilität in der Instandhaltung und im Unternehmen.

Unternehmen scheitern an ihrer gewollten aber schlecht vorbereiteten und organisierten Transformation. Sei es die Digitalisierung oder die Bekämpfung des Fachkräftemangels, oder eben die Chance Agilität in die Unternehmensorganisation zu etablieren.

Agilität ist zu einem weit verbreiteten und sehr inflationär gewordenen Begriff mutiert. Und es wird mittlerweile zu oft für das Scheitern, eben dann, wenn etwas nicht gelingt verantwortlich gemacht. Agilität ist inzwischen ein Synonym für Planlosigkeit, Chaos und Unvermögen geworden. Nach meiner Erfahrung ist das Problem allerdings nicht die Methode selbst, sondern deren halbgare Umsetzung und fehlende Unterstützung durch das Team, die Abteilungen und deren Mitglieder.

Sie müssen natürlich auch bedenken, ihre Mitarbeiter fühlen sich mitunter in den bisherigen Strukturen sehr wohl und wollen keine Veränderung in ihren Arbeitsbereichen. Sie haben sich eingerichtet und wollen das alles so bleibt wie es gerade ist.

Ein tiefes Verständnis für Agilität als Denk- und Führungssystem fehlt den meisten Unternehmen. Methodiken stehen für sich allein, werden nicht zu Ende gedacht oder sinnvoll in die Unternehmensstruktur und Organisation eingebunden. Ohne die nötige, konsequente Umsetzung und Unterstützung des Managements scheitert jedes noch so gute System.

Die meisten Unternehmen sehen ihre internen Abteilungen als gut funktionierende Teams. Allerdings sitzen dort meist nur Leute mit sehr ähnlichen Aufgaben und Fähigkeiten nebeneinander Tisch an Tisch und so wird dann auch gearbeitet.

Erfolgreiche Projekte, funktionieren aber anders, brauchen unterschiedlichste Fähigkeiten und Menschen in einem Team. Und diese unterschiedlichen Charaktere müssen effektiv geführt und unterstützt werden, es braucht einen Teamleader der die Beiträge aller in die richtigen Bahnen lenkt. Einen Leader der Agilität vorlebt, dem die Teammitglieder vertrauen und der das Projekt in den Vordergrund stellt.

Also eben nicht nur Mitglieder aus einer, sondern aus mehreren Abteilungen, denn interdisziplinäre Teams gehen die Aufgaben aus verschiedenen Blickwinkeln an und das ist ein Schlüssel zur erfolgreichen Projektumsetzung. Die Crux daran: Jede Abteilung hat ihre eigenen Interessen und Motive, ihre eigenen Abläufe und Funktionsweisen.

Um ein funktionierendes, agiles Team zusammenzustellen brauchen sie natürlich den passenden Teamleader und den richtigen Führungsstil.

Teams sind eine komplexe Struktur und dort werden mitunter die unterschiedlichsten Charaktere zusammen gebracht. Es gilt die passende Mischung aus funktioneller und persönlicher Führung zu etablieren. Die Teammitglieder müssen vertrauen und von der gegenseitigen Arbeit partizipieren, sie müssen lernen sich schnell in neuen Situationen zu Recht zu finden.

Zum Schluss möchte ich als Anhänger dieser Methode der Agilität Ihnen natürlich nicht vorenthalten, was Agilität, richtig angewendet, in Zukunft auch für Sie bedeuten kann:

Agilität heißt, in einer komplexen, sich schnell ändernden Situation früh und dauerhaft produktiv nutzbare und qualitativ hochwertige Ergebnisse zu erzielen.

Agilität ist die Kunst den Kompass schnell in die Richtung der neuen Anforderungen einzuordnen.

Agilität ist als Reaktion auf langsame, bürokratische Organisationen gewachsen, um veränderten Bedingungen zu schnell begegnen.

Um Agilität in der Unternehmung zu etablieren muss man auf Managementebene rigoros die Anwendung und Umsetzung einfordern und unterstützen.

Prekär wird die Einführung neuer Systeme ohne Management und deren uneingeschränkte Unterstützung. Sobald die Mitarbeiter merken das die obere Etagen sich eigentlich nicht für Reformen und Innovationen interessieren, wird jede Organisation Fragil und am Ende scheitern.

Agilität ist ein probates Mittel und wird in der Zukunft, in der Netzwerke und Teams zusammen agieren, ein Credo des modernen Arbeiten. Für die betriebliche Instandhaltung und Industrie 4.0 werden schon jetzt agile, heterogene Teams benötigt die schnell, flexibel und proaktiv arbeiten.

 

Instandhaltungsorganisation

Instandhaltungsorganisation

Der Instandhaltungsleiter hat heute und in der Zukunft riesige Themenfelder zu bewältigen. Veränderungen finden in einem rasanten Tempo statt und es gilt immer neuen Herausforderungen gerecht zu werden. Die vielen Prognosen der sogenannten Experten lagen durchweg daneben. So ist die interne Instandhaltung noch immer der wichtigste Faktor zur Sicherstellung einer Produktion und zur Sicherung der Maschinennutzungszeiten.

Für die Zukunft gilt es diese 7 wichtigsten Themen zu lösen:

  1. Die Sicherung der Maschinennutzung zu gewährleisten und das Anlagevermögen des Unternehmens zu sichern.
  2. Instandhaltungskosten müssen transparent dargestellt werden um die Kosten unter Kontrolle zu behalten. Instandhaltung und Ersatzteilmanagement kosten nun einmal Geld, das beim richtigen Einsatz sehr rentabel angelegt ist.
  3. Etablieren von vorbeugender Instandhaltung und condition Monitoring im Zuge von Industrie 4.0. Verschiebung von korrektiver Instandhaltung hin zur präventiver Instandhaltung.
  4. Digitalisierung der Produktion, der Maschinen und der Instandhaltung umsetzen. Infrastrukturen, Sensorik und andere Hardware müssen eingebaut und angeschlossen werden.
  5. Fundamentierung von Wissen im Unternehmen. Eine Wissensdatenbank schaffen um die Erfahrung der älteren Kollegen zu sichern. Wissen und Informationen sind von großer Bedeutung für eine Technikabteilung.
  6. Generationswechsel und Fachkräftemangel in der Instandhaltung durch Ausbildung entgegenwirken.
  7. Die Zusammenarbeit der internen Technikabteilungen und der externen Serviceanbieter geschickt zu kombinieren.

Aufgabenstellung einer Instandhaltungsleitung z.B.

  • Festlegen der Instandhaltungsstrategie mit dem Management – Kurzfristig, Reaktion bei Störungen und Produktionsausfällen. Mittelfristig, vorbeugende Instandhaltung und Wartung. Langfristig, Revisionen, Retrofit, Projekte und Jahresplan I&R.
  • Planung der Instandhaltungskosten und Investitionen zusammen mit dem Management und Controlling auf Grundlage der I&R Strategie und des Jahresplans.
  • Planung der vorbeugenden Instandhaltungsmaßnahmen auf Basis der Jahresplanung, Budget und der I&R Strategie.
  • Planung der eigenen Kapazitäten, Ressourcen und Fremddienstleister für Projekte und I&R Maßnahmen. Ausfallrisiko der Anlagen und die Reaktionszeit der Instandhaltung berücksichtigen.
  • Planungen und Maßnahmen mit der AV und allen angeschlossenen Abteilungen abstimmen unter Berücksichtigung der Produktionszeiten und der Kosten. Interdisziplinäre Kommunikation über das Instandhaltungsgeschehen.
  • Ersatzteilmanagement und Lieferantenmanagement zusammen mit dem Einkauf planen und abstimmen.
  • Terminplanung für Instandhaltungsmaßnahmen erstellen. Terminverfolgung und Kontrolle des Arbeitsfortschritts von I&R Maßnahmen.
  • Aufträge vergeben, Kosten kontrollieren und Abrechnungen prüfen.
  • Dokumentieren der Instandhaltungsaktivitäten – Wissensdatenbank schaffen.
  • Auswertungen der Dokumentationen zur Schwachstellenanalyse.
  • Erstellen von Arbeitsanweisungen und Plänen auf Basis der Dokumentationen und Auswertungen. Investitionspläne, Eskalationspläne bei Störung und Produktionsausfall-Notfallpläne-Checklisten-Wartungspläne-Inspektionspläne Arbeitsanweisungen-Fehlerkataloge-Entstöranweisungen-Ersatzteilauswahl-Lasten und Pflichtenheft-Konformitätserklärungen-Statistiken etc.
  • Standardisierung von Maschinen und Ersatzteilen voran treiben.
  • Neue Technik integrieren wie den 3D Druck für Ersatzteile etc.
  • Umweltschutzmaßnahen und Arbeitssicherheit, Einhaltung der gesetzlichen Vorgaben und Bestimmungen
  • Audit, Umwelt; und Energiemanagement, Risiko und Gefährdungsbeurteilungen
  • Regelmäßige Prüfungen gmäß TRBS, ArbSchGes, BGV A3, BG Vorschriften etc.

Und es sind sicher noch einige Aufgaben die ich hier nicht erwähnt habe, die allerdings ebenso wichtig sind wie all die anderen. Sie müssen die neueste innovative Technik ins Unternehmen einbringen und sind immer auf der Suche nach der modernsten Technik und Methoden zur Anlagenverbesserung.

Mithilfe der Auswertungen der Instandhaltungsdokumentationen sind sie in der Lage Schwachstellen zu identifizieren und diese dauerhaft zu beseitigen. Die Instandhaltung beseitigt die Ursachen für Maschinenausfälle und ermittelt störungs- und kostenintensive Bauteile und Baudruppen. Es werden technische und organisatorische Verbesserungspotenziale aufgezeigt und Umsetzungspläne erarbeitet. Mithilfe von condition Monitoringsystemen werden Verschleiß und Anlagenausfälle frühzeitig erkannt und entsprechende Gegenmaßnahmen eingeleitet. Das Ziel muss es sein, das die Anzahl der korrektiven Instandhaltungsmaßnahmen unter denen der präventiven Instandhaltung liegen. Die Anlagenzuverlässigkeit soll gesteigert und stabilisiert werden.

Die Instandhaltung etabliert ein funktionierendes Ersatzteilmanagement mit zentraler und dezentraler Lagerhaltung. Lieferantenmanagement in Absprache mit dem technischen Einkauf . Standardisierung von Maschinen und Bauteilen schafft Platz im Lager und erleichtert der Instandhaltung die Fehelersuche und Entstörung. Mithilfe von Leisten und Pflichtenheften werden den Lieferanten und Servicepartner die Forderungen klar mitgeteilt.

Instandhaltung 2.0 mit System – Industrie 4.0

Instandhaltung 2.0 mit System – Industrie 4.0

Instandhaltung mit den neuen Industrie 4.0 Methoden und condition Monitoring sowie CMMS basierte Instandhaltung 2.0.

Wie sieht der Weg aus den Unternehmen beschreiten müssen um ihre Instandhaltung von korrektiver Instandhaltung zur prognostizierten Instandhaltung zu bekommen. Versprochen werden den Betreibern und Unternehmen die einfachsten und effektivsten Tools um Prediktive Maintenance einfach und schnell umzusetzen.

Doch was ist wirklich nötig um eine prognostizierten Instandhaltung zu etablieren? Erfahrungen und Erkenntnisse aus der Vergangenheit sind da ein wichtiger Baustein. Condition Monitoring findet schon länger in den Betrieben statt und kann uns als ein Wegweiser hin zur Prognose von Ausfallferhalten von Maschinen und Anlagen dienen. Auswertung und Analyse der gewonnen Daten werden als weiterer Baustein zum Gelingen von Prediktive Maintenance benötigt.

1.Die Instandhaltung ist qualifizierter Dienstleister der Produktion und sichert den Fertigungsprozess.

2.Die Instandhaltung analysiert die eigenen Abläufe und Prozesse und setzt die gewonnenen Erkenntnisse kontinuierlich in Verbesserungen um.

3.Die Instandhaltung setzt sich Ziele und stellt den Erfüllungsgrad messbar dar.

4.Die Instandhaltung leistet einen positiven Beitrag zum Betriebsergebnis und erhält die Investitionen des Unternehmen.

Die derzeit vorhandenen Systeme produzieren eine Unmenge von Daten. Die davon ableitbaren Informationen sind jedoch nicht immer zu verwenden. Ziel des Condition Monitoring muss es sein, aus den erfassten Daten Informationen und Handlungsentscheidungen abzuleiten, am besten natürlich vollkommen automatisiert. Potenzielle Anlagenstörungen frühzeitig erkennen und automatische Abstellmaßnahmen einleiten heißt das Ziel von Instandhaltung 4.0 und Prediktive Maintenance.

Intelligentes Anlagen-Management und eine Steigerung des Stellenwerts der zustandsorientierten Instandhaltung sind die Folgen. Das bedeutet Predictive Maintenance auf Basis von Condition Monitoring das mithilfe von Industrie 4.0 umgesetzt wird. Aus den gewonnen Erfahrungen muss die Instandhaltung das gesamte Optimierungspotential abschöpfen und die richtigen Prognosen erstellen, das wird den Nutzungsgrad von Maschinen und Anlagen stabilisieren und am Ende steigern können.

Instandhaltung 2.0 – Industrie 4.0

Instandhaltung 2.0 – Industrie 4.0

Wartung von Werkzeugmaschinen

Wartung von Werkzeugmaschinen

Wartung der Maschinenbediener

  • Abschmieren – Lager, Ketten, Führungen
  • Auffüllen – Kühlschmiermittel, Öl, Fett
  • Austausch – Öl, Leuchtmittel
  • Einstellen – Messmittel, Anschlag, Uhren
  • Reinigen – Kontakte, Aufnahmen, Fenster
  • Kontrolle – Parameter, Sollwerte, Füllstände

Der Maschinenbediener ist immer vor Ort und kennt seine Anlage wohl von allen Beteiligten am besten.

Der Bediener macht zu jedem Schichtbeginn oder Schichtwechsel einen Kontrollgang und inspiziert kurz „seine“ Anlage. So kann er Unregelmäßigkeiten direkt erkennen.

  • Sichtkontrolle auf: Risse, Verformungen, Beulen, Vibrationen, Wackeln oder Ruckeln, Flüssigkeitsleckagen, Rauch etc.
  • Geräuschkontrolle: Lagergeräusche, Pumpengeräusche, Maschinengeräusche, hörbare Vibrationen, zischen von Druckluft.
  • Geruchskontrolle: Verbrannte Kabel, heißes Öl, Gasaustritt, heiß laufende Lager.
  • Messungen: Temperaturen, Drücke, Durchfluss, Vibrationen.

 

Der erfahrene Maschinenbediener verschafft sich so in einem Rundgang den Überblick und kann mit seiner Arbeit beginnen.

Während die Anlage ihre eigentliche Aufgabe erledigt kann der Maschinenbediener Aufgaben der autonomen Instandhaltung durchführen.

1.Führungen, Abstreifer und Faltenabdeckungen sind regelmäßig zu reinigen.

Führungen sind frei von Schmutz zu halten und es ist auf eine ausreichende Schmierung zu achten. Sichtkontrolle auf Risse, Abrieb, Korrosion und Verformungen. Wir unterscheiden hier die Gleitlagerführung und die Wälzlagerführung

Abstreifer sollen Dreck und Schmutz von empfindlichen Stellen und Lagern fernhalten. Sie müssen regelmäßig gereinigt und kontrolliert werden. Sind z.B. Risse oder Verformung erkennbar.

Bewegliche Faltenabdeckungen sollen z.B. Führungen vor Verschmutzungen schützen. Achten sie auf die einwandfreie Funktion, Risse, Befestigung und reinigen sie die Abdeckungen regelmäßig.

An einer modernen Werkzeugmaschine befinden sich die verschiedenen Teilsysteme und Baugruppen.

  • Mechanische Baugruppen, da sind das Maschinengestell, die Kraftübertragung, die Führungen etc.
  • Hydraulische Baugruppen, da ist das Hydraulikaggregat, Manometer, Leitungen, Ventile und Zylinder.
  • Pneumatische Baugruppen, da ist der Verdichter (Kompressor), Manometer, Leitungen und Zylinder etc.
  • Elektrische Baugruppen, da ist der Antriebsmotor, Leitungen, Sensoren.
  • Elektronische Baugruppen, Steuerung, Sensoren und Aktoren.
  1. Gesamtanlage
  2. Werkzeugmaschine
  3. Automation
  4. Roboter
  5. Förderbänder
  6. Versorgung
  7. Bestückung
  8. Abtransport

Für alle Baugruppen und Teilsysteme haben die verschiedenen Hersteller Wartungsangaben im Maschinenordner verfasst. Beim durchlesen werden sie feststellen, dass es an den Teilsystemen immer gleichartige und terminlich passende Arbeiten zum Thema Wartung gibt. Mittels der Instandhaltungsplanung obliegt es nun ihnen einen „Gesamtwartungsplan“ für die Anlage zu erstellen.

Dokumentieren sie alle Arbeiten in einem Maschinenlogbuch!

Mechanische Baugruppen werden besonders beansprucht. Sie dienen der Kraftübertragung und müssen große Drehmomente umsetzen. Führungen und Lager müssen geschmiert werden um den Verschleiß zu minimieren, Ölbehälter müssen kontrolliert und befüllt werden. Bei Wellen und Kupplungen ist die Ausrichtung und Geräusche zu kontrollieren. Getriebe, Ketten und Riemen sind regelmäßig zu prüfen.

https://www.amazon.de/dp/1981086102

Hydraulik Basics

Hydraulik Basics

The word hydraulics comes from the Greek and can be derived from the composition of the two words hýdor „the water“ and aulós „the pipe“.

The theory of hydraulics is the theory of the flow behavior of liquids. In engineering and mechanical engineering, hydraulics involves the transmission of forces, energy and signals as well as lubrication.

It’s about pressure and it’s about volume, speed and friction, kinetics and static, and potential and kinetic energy. Hydraulics is versatile and versatile to use.

As one of the „fathers of hydraulics is considered in ancient times Archimedes. The story of examining a golden crown and his brainwave in the bathtub is a story much told to this day. The buoyancy of a body in a liquid should be the birth of the hydraulics, Eureka I called it!

Buoyancy and displacement of objects in the water is also a topic of hydraulics.
In this hydraulic trainer you can get to know the basics of hydraulics and fluid technology.

Where do you first meet a hopefully functioning hydraulic system today?

First there is the heating system of your apartment. It works hydraulically. The heated water is by means of a „circulation pump“ to the „consumers“, the radiators and the shower, promoted and stored in a storage store. Then it goes on the morning walk to the toilet on, hopefully their hydraulic system works, they will notice it when they actuate the „valve“ of the toilet flushing. Thankfully, the water washes the things away. The cistern is automatically filled with water and switches off the „filling valve“ when the set fill level is reached.

Brushing and washing teeth, they turn on the „mixing valve“ of the faucet and it comes water in the desired amount and temperature. All thanks to the functioning hydraulic water system in her house.

For this to work, the hydraulic system must generate a volume flow. This „volume flow“ meets various „resistance“ such as friction in the pipe and pitch of the pipes, etc.

From the resistance, the applied forces, then arises the „pressure“ in hydraulic systems.

Forces transmitted in a hydraulic system are generated by the volume flow generated by the pump. Movement through a volume flow encounters resistance in the hydraulic system (e.g., the force a cylinder needs to do its job). From the factors volumetric flow and resistance or force required results in the resulting pressure.
The required volume flow is generated in the hydraulic usually by a pump which is driven by an electric motor. The hydraulic fluid always stays in circulation with a hydraulic system, in a closed system (water hydraulics can do without it). This means there is a flow and return for the hydraulic fluid. For example, the hydraulic fluid can be conveyed by a pump to a consumer such as a hydraulic cylinder and is returned from there via a return line to the storage tank.

Fundamentals and formulas of hydraulics

Pascal’s Law

The action of a force (F) on a fluid at rest produces in it a pressure (p) which propagates uniformly in all directions and always acts perpendicular to the boundary surfaces of the fluid.

The direction of movement in hydraulics and hydrostatics are two topics. That is, when using multiple cylinders, each individual cylinder will expand according to the force required to lift the load at that location. The cylinders lifting the lightest load first pull out, and the cylinders lifting the heaviest load travel last. Prerequisite is, the cylinders have the same pressure force. This means in practice, pressure always takes the path of least resistance.

For the synchronization of 2 and more cylinders, there are different systems such as e.g. the Graetz rectifier plate. Or cylinders with position measuring system are used.

According to Pascal’s Law, a force acting on a fluid at rest spreads in all directions. Therefore, the shape of a container or tank is not important.

We find the application of hydrostatic pressure in the area of ​​water supply with high tanks or large water reservoirs on roofs of houses. The Tower Bridge in London has been moving hydraulically for decades. Initially, the bridge was powered up by steam engines and water pressure, meanwhile thanks to high-performance hydraulics.

The force that a hydraulic cylinder can produce is equal to the hydraulic pressure multiplied by the „effective piston area“ of the cylinder. F = p × A

The power of the hydraulic pump is composed of the variables P = p x qv. P = power in watts. p = pressure in bar and qv = volumetric flow: second.

The volume flow is composed of the sizes of the cross-sectional area of ​​the tubes (A) and the velocity of the liquids (v). Q = A x v

Printing spreads in all systems in closed systems the same. Liquids are freely malleable and take on the shape of the container.

The size of the effective piston area determined by the pressure of the force of a cylinder.

Properties of liquids that are important in hydraulics.

The viscosity is the fluidity of a liquid. The viscosity describes the effect of the internal friction of a fluid, which means the greater the internal friction, the higher the viscosity.

Viscosity is a measure of the internal friction due to the resistance that occurs with mutual displacement of adjacent layers in a liquid.

High viscosity media overcome resistance in hydraulic systems heavier. The flow resistance is higher than at low viscosity.

Another important feature of hydraulic oil is its lubricity. The external friction is a resistance that must be overcome by the hydraulic oil.

The speed with which a liquid flows through a hydraulic system is in turn dependent on the viscosity and lubricity.

The next point to consider is the compressibility of the fluids used. While pressurized air can significantly reduce its volume, oil and water remain under pressure almost without significant volume loss. However, in practice there are always air pockets in the fluid and this must be taken into account.

With the speed and the compressibility of liquids further influencing factors are added.

The flow of hydraulic oil has a decisive influence on e.g. the energy loss of a hydraulic system.

Exzenterpressen – der Kurbeltrieb

Exzenterpressen – der Kurbeltrieb

Diese Lektüre richtet sich an die Betreiber, Bediener und Personen die mit Exzenterpressen arbeiten. Es wurde als kleiner Einstieg in den Umgang mit Pressen und als technische Grundlage für die Neulinge und Auszubildende an Pressen geschrieben.

Sicherheit geht vor und hat an Pressen oberstes Gebot.

Pressen sind heute weit verbreitet und die verschiedensten Werkstoffe und Legierungen lassen sich zu den vielfältigsten Produkten formen.

In der Umformung von Metall stellen Pressen Produkte mit anspruchsvollen technischen Eigenschaften her.

Die Automobilbranche, Luft und Schifffahrt, Bau und Landmaschinen, ja eigentlich überall sind die Teile im Einsatz. Heute werden Knetlegierungen und Sintermetalle in Form gebracht, es werden Schrauben, Muttern und Bolzen gepresst, gestanzt, gezogen und geschmiedet.

Der Kurbeltrieb bildet das meist angewandte Antriebssystem bei Pressen.

Immer wenn rotierende Bewegung und Energie des Triebwerks in eine geradlinige Bewegung umgewandelt werden muss, oder umgekehrt, spricht man vom Kurbeltrieb.

Eine um einen festen Punkt rotierende, exzentrische Welle ist mit der Druckstange (Pleuel) verbunden und wird am anderen Ende geradlinig geführt (Stößel).

Der rotierende Teil ist die Kurbel und das Pleuel ist die Druck/Schubstange die den Stößel auf und ab bewegen.

Der Pleuel sitzt formschlüssig in der Bronzelagerung auf der Exzenterwelle und wird beweglich, Kugelkopf in Kugelpfanne, mit dem Stößel verbunden.

Kurbeltriebe arbeiten nach dem sogenannten Prinzip des Gelenkvierecks.

Die einfache Form des Kurbeltriebes, auch Schubkurbel genannt, finden sie an der Werkbank, der Schraubstock. Mit einer Handkurbel und Muskelkraft wird der Hebel im Kreis um die Spindel bzw. Kurbel bewegt. An einem Kettenzug findet sich der Kurbeltrieb mit Hebel und Kurbel.

Bei Pressen wird der sogenannte Schleppkurbeltrieb verwendet, in Abwandlung auch als Kniehebeltrieb.

Mechanische Pressen gehören zu den Maschinen, die meist spanlose Formgebung des Werkstücks findet zwischen einem auf dem Pressentisch fest verbundenen Werkzeugunterteil und dem am Stößel befindlichen Werkzeugoberteil durch eine geradlinige Bewegung statt.

Das Werkstück wird in der Abwärtsbewegung zwischen Werkzeugunter,- und Werkzeugoberteil geformt.

Jeder Maschinenhersteller liefert in seiner Maschinendokumentation die passenden Unterlagen und Angaben zu allen relevanten Parametern. Beim Kauf einer Maschine sollten sie sich über die Kenngrößen der Maschinen und den Verfahrenskenngrößen ihrer Fertigung im Klaren sein.

Die Auswahl einer Presse richtet sich also in erster Linie nach der Einbauhöhe und Einbauweite des Werkzeugraums, nach der Anzahl der Hübe/min, nach der möglichen Hubhöhe des Stößels, der Nennpresskraft, der Belastbarkeit des Maschinengestells und natürlich nach wirtschaftlichen Fakten wie Stromverbrauch und Anschaffungskosten.

Als Betreiber wissen sie um die verwendeten Werkzeuge und deren Maße.

Wie tief muss das Oberwerkzeug in das Unterteil eintauchen.

Und welche Peripherie muss an und um den Pressenraum gebaut werden.

Arbeiten sie im Tiefziehbereich dann benötigen ein Ziehkissen.

Pressen sind gefährliche Maschinen und müssen „sicher“ vom Anlagenbetreiber zu bedienen sein.

Die Prüfung durch eine befähigte Person, in regelmäßigen zeitlichen Abständen, wird durch die Betriebssicherheitsverordnung und andere Verordnungen zwingend vorgeschrieben.

Die Prüfungen müssen im Prüfbericht dokumentiert werden.

Pressen und Kraftmaschinen dürfen nur betrieben werden, wenn die Betriebsanleitung und Sicherheitsunterweisungen vorliegen und den Bedienern zugänglich sind.