Kategorie: autonome Instandhaltung

Are you trapped in reactive maintenance?

Are you trapped in reactive maintenance?

Are you trapped in reactive maintenance?

Your company maintenance work is purely reactive and does not pursue any strategy if:

1. Required spare parts are not in stock and nobody knows
2.
You will be interviewed every morning at the production meeting after the last shift     and the last unplanned machine outages
3.
Reduces the useful life of the machines and increases downtime
4.
Employees performing maintenance are poorly trained and maintenance is poorly prepared, with high turnover in the maintenance department
5.
The maintenance eliminates disturbances but avoids disturbances permanently
6.
The daily, weekly, monthly and all other maintenance and inspections are not carried out regularly
7.
The production makes their problems to problems of maintenance
8.
The cost of maintenance increases and there is no maintenance plan
9.
The overtime of the maintenance staff is well above the average of the other employees in the company
10.
The company does not maintain a knowledge database for its machines and equipment and maintenance can not substantiate its knowledge because there is no basis for it
11.
The purchasing department does not carry out the maintenance orders and buys „cheap“ spare parts
12.
The share of unplanned maintenance measures account for more than 30% of the work of maintenance
13.
No clear specifications and KPIs on the part of the management to the maintenance missing maintenance strategy and organization

The management is responsible for the planning and the maintenance strategy and specifies the direction and the resources. The management lays the foundation and provides the infrastructure. Along with maintenance, a short-term strategy, a medium-term strategy and, of course, a long-term strategy are defined. This organization enables maintenance to proceed in a planned manner and to stabilize and increase the efficiency of machines and plants. Part of the maintenance is an efficient spare parts management as well as a training plan for the employees.

Exzenterpressen – der Kurbeltrieb

Exzenterpressen – der Kurbeltrieb

Diese Lektüre richtet sich an die Betreiber, Bediener und Personen die mit Exzenterpressen arbeiten. Es wurde als kleiner Einstieg in den Umgang mit Pressen und als technische Grundlage für die Neulinge und Auszubildende an Pressen geschrieben.

Sicherheit geht vor und hat an Pressen oberstes Gebot.

Pressen sind heute weit verbreitet und die verschiedensten Werkstoffe und Legierungen lassen sich zu den vielfältigsten Produkten formen.

In der Umformung von Metall stellen Pressen Produkte mit anspruchsvollen technischen Eigenschaften her.

Die Automobilbranche, Luft und Schifffahrt, Bau und Landmaschinen, ja eigentlich überall sind die Teile im Einsatz. Heute werden Knetlegierungen und Sintermetalle in Form gebracht, es werden Schrauben, Muttern und Bolzen gepresst, gestanzt, gezogen und geschmiedet.

Der Kurbeltrieb bildet das meist angewandte Antriebssystem bei Pressen.

Immer wenn rotierende Bewegung und Energie des Triebwerks in eine geradlinige Bewegung umgewandelt werden muss, oder umgekehrt, spricht man vom Kurbeltrieb.

Eine um einen festen Punkt rotierende, exzentrische Welle ist mit der Druckstange (Pleuel) verbunden und wird am anderen Ende geradlinig geführt (Stößel).

Der rotierende Teil ist die Kurbel und das Pleuel ist die Druck/Schubstange die den Stößel auf und ab bewegen.

Der Pleuel sitzt formschlüssig in der Bronzelagerung auf der Exzenterwelle und wird beweglich, Kugelkopf in Kugelpfanne, mit dem Stößel verbunden.

Kurbeltriebe arbeiten nach dem sogenannten Prinzip des Gelenkvierecks.

Die einfache Form des Kurbeltriebes, auch Schubkurbel genannt, finden sie an der Werkbank, der Schraubstock. Mit einer Handkurbel und Muskelkraft wird der Hebel im Kreis um die Spindel bzw. Kurbel bewegt. An einem Kettenzug findet sich der Kurbeltrieb mit Hebel und Kurbel.

Bei Pressen wird der sogenannte Schleppkurbeltrieb verwendet, in Abwandlung auch als Kniehebeltrieb.

Mechanische Pressen gehören zu den Maschinen, die meist spanlose Formgebung des Werkstücks findet zwischen einem auf dem Pressentisch fest verbundenen Werkzeugunterteil und dem am Stößel befindlichen Werkzeugoberteil durch eine geradlinige Bewegung statt.

Das Werkstück wird in der Abwärtsbewegung zwischen Werkzeugunter,- und Werkzeugoberteil geformt.

Jeder Maschinenhersteller liefert in seiner Maschinendokumentation die passenden Unterlagen und Angaben zu allen relevanten Parametern. Beim Kauf einer Maschine sollten sie sich über die Kenngrößen der Maschinen und den Verfahrenskenngrößen ihrer Fertigung im Klaren sein.

Die Auswahl einer Presse richtet sich also in erster Linie nach der Einbauhöhe und Einbauweite des Werkzeugraums, nach der Anzahl der Hübe/min, nach der möglichen Hubhöhe des Stößels, der Nennpresskraft, der Belastbarkeit des Maschinengestells und natürlich nach wirtschaftlichen Fakten wie Stromverbrauch und Anschaffungskosten.

Als Betreiber wissen sie um die verwendeten Werkzeuge und deren Maße.

Wie tief muss das Oberwerkzeug in das Unterteil eintauchen.

Und welche Peripherie muss an und um den Pressenraum gebaut werden.

Arbeiten sie im Tiefziehbereich dann benötigen ein Ziehkissen.

Pressen sind gefährliche Maschinen und müssen „sicher“ vom Anlagenbetreiber zu bedienen sein.

Die Prüfung durch eine befähigte Person, in regelmäßigen zeitlichen Abständen, wird durch die Betriebssicherheitsverordnung und andere Verordnungen zwingend vorgeschrieben.

Die Prüfungen müssen im Prüfbericht dokumentiert werden.

Pressen und Kraftmaschinen dürfen nur betrieben werden, wenn die Betriebsanleitung und Sicherheitsunterweisungen vorliegen und den Bedienern zugänglich sind.

Hydraulik – Grundlagen

Hydraulik – Grundlagen

Das Wort Hydraulik stammt aus dem Griechischen und kann hergeleitet werden aus der Zusammensetzung der beiden Wörter hýdor „das Wasser“ und aulós „das Rohr“.

Die Lehre der Hydraulik ist die Lehre vom Strömungsverhalten der Flüssigkeiten. In der Technik und im Maschinenbau geht es bei der Hydraulik um die Übertragung von Kräften, Energie und Signalen sowie zur Schmierung.

Es geht um Druck und es geht um Volumen, um Geschwindigkeit und Reibung, um Kinetik und Statik, und um potentielle und kinetische Energie. Hydraulik ist vielseitig und vielfältig einzusetzen.

Als einer der „Väter der Hydraulik gilt in der Antike Archimedes. Die Geschichte der Prüfung einer goldenen Krone und seinem Geistesblitz in der Badewanne ist eine bis heute viel erzählte Geschichte. Der Auftrieb eines Körpers in einer Flüssigkeit soll die Geburtsstunde der Hydraulik sein, Heureka ich habe es hat er gerufen!

Auftrieb und Verdrängung von Gegenständen im Wasser ist auch Thema der Hydraulik.
In diesem Hydraulik-Trainer kann man die Grundlagen der Hydraulik und Fluidtechnik kennenlernen.

Wo treffen sie heute als erstes auf eine hoffentlich funktionierende Hydraulik?

Zuerst wäre da die Heizungsanlage ihrer Wohnung. Sie funktioniert hydraulisch. Das erhitzte Wasser wird mittels einer „Umwälzpumpe“ bis zu den „Verbrauchern“, den Heizkörpern und der Dusche, gefördert und in einem Vorratsspeicher aufbewahrt. Dann geht es beim morgendlichen Gang aufs WC weiter, hoffentlich funktioniert ihre Hydraulikanlage, sie werden es merken, wenn sie das „Ventil“ der WC Spülung betätigen. Gott sei Dank, das Wasser spült die Sachen weg. Und der Spülkasten wird automatisch mit Wasser befüllt und schaltet bei Erreichen des eingestellten Füllstands das „Füllventil“ ab.

Zähne putzen und waschen, sie drehen das „Mischventil“ des Wasserhahns auf und es kommt Wasser in der gewünschten Menge und Temperatur. Alles dank der funktionierenden hydraulischen Wasseranlage in ihrem Haus.

Damit das alles funktioniert muss die hydraulische Anlage einen Volumenstrom erzeugen. Dieser „Volumenstrom“ trifft auf verschiedene „Wiederstände“ wie Reibung im Rohr und Steigung der Rohre etc.

Aus dem Widerstand, den aufzubringenden Kräften, entsteht dann der „Druck“ in hydraulischen Anlagen.

Kräfte, die in einem hydraulischen System übertragen werden, entstehen durch den von der Pumpe erzeugten Volumenstrom. Bewegung durch einen Volumenstrom stößt in hydraulischen System auf Widerstand (z.B. die Kraft die ein Zylinder benötigt um seine Arbeit zu verrichten). Aus den Faktoren Volumenstrom und Widerstand bzw. benötigte Kraft ergibt sich der entstehende Druck.
Der erforderliche Volumenstrom wird in der Hydraulik in der Regel durch eine Pumpe erzeugt, die mittels eines elektrischen Motors angetrieben wird. Die Hydraulikflüssigkeit bleibt bei einem hydraulischen System immer im Kreislauf, in einem geschlossenen System (bei der Wasserhydraulik kann drauf verzichtet werden). Das bedeutet es gibt einen Vor- und Rücklauf für die Hydraulikflüssigkeit. Zum Beispiel kann die Hydraulikflüssigkeit durch eine Pumpe zu einem Verbraucher wie einem Hydraulikzylinder gefördert werden und wird von dort aus über eine Rücklaufleitung zum Vorratstank zurückgeleitet.

Grundlagen und Formeln der Hydraulik

Das Pascalsches Gesetz

Die Wirkung einer Kraft (F) auf eine ruhende Flüssigkeit erzeugt in dieser einen Druck (p), der sich in alle Richtungen gleichmäßig fortpflanzt und stets senkrecht auf die Begrenzungsflächen der Flüssigkeit wirkt.

Die Bewegungsrichtung in der Hydraulik und der Hydrostatik sind zwei Themen. Das heißt, dass bei der Verwendung mehrerer Zylinder jeder einzelne Zylinder entsprechend der Kraft, die zum Heben der Last an der betreffenden Stelle erforderlich ist, ausfahren wird. Die die leichteste Last hebenden Zylinder fahren zuerst aus, und die die schwerste Last hebenden Zylinder fahren zuletzt aus. Voraussetzung ist, die Zylinder haben die gleiche Druckkraft. Das bedeutet in der Praxis, Druck nimmt immer den Weg des geringsten Widerstands.

Für den Gleichlauf von 2 und mehr Zylindern gibt es verschiedene Systeme wie z.B. die Graetz Gleichrichterplatte. Oder es werden Zylinder mit Wegmesssystem verwendet.

Nach dem Gesetzt von Pascal breitet sich eine auf eine ruhende Flüssigkeit wirkende Kraft nach allen Richtungen gleich aus. Deshalb ist die Form eines Behälters oder Tank nicht von Bedeutung.

Wir finden die Anwendung des hydrostatischen Drucks im Bereich der Wasserversorgung mit Hochbehältern oder großen Wasserreservoirs auf Dächern von Häusern. Die Tower Bridge in London bewegt sich seit Jahrzehnten hydraulisch. Anfangs wurde die Brücke mittels Dampfmaschinen und Wasserdruck, mittlerweile dank einer Hochleistungshydraulik hochgeschwenkt.

Die Kraft, die ein hydraulischer Zylinder erzeugen kann, ist gleich dem hydraulischen Druck multipliziert mit der “wirksamen Kolbenfläche” des Zylinders. F= p x A

Die Leistung der Hydraulikpumpe setzt sich aus den Größen P= p x qv zusammen. P= Leistung in Watt. p= Druck in bar und qv= Volumenstrom: Sekunde.

Der Volumenstrom setzt sich aus den Größen der Querschnittsfläche der Rohre (A) und der Geschwindigkeit der Flüssigkeiten (v) zusammen. Q= A x v

Druck breitet sich in geschlossenen Systemen nach allen Seiten gleich aus. Flüssigkeiten sind frei formbar und nehmen die Gestalt des Behälters an.

Die Größe der wirksamen Kolbenfläche bestimmt durch den Druck die Kraft eines Zylinders.

Eigenschaften von Flüssigkeiten die in der Hydraulik von Bedeutung sind.

Die Viskosität ist die Fließfähigkeit einer Flüssigkeit. Die Viskosität beschreibt die Wirkung der inneren Reibung eines Fluids, das bedeutet je größer die innere Reibung umso höher ist die Viskosität.

Die Viskosität ist ein Maß für die innere Reibung infolge des Widerstandes, der bei gegenseitiger Verschiebung benachbarter Schichten in einer Flüssigkeit auftritt.

Medien mit hoher Viskosität überwinden Widerstände im hydraulischen Systemen schwerer. Der Strömungswiderstand ist höher als bei niedriger Viskosität.

Eine weitere wichtige Eigenschaft des Hydrauliköls ist die Schmierfähigkeit. Die äußere Reibung ist ein Widerstand der vom Hydrauliköl überwunden werden muss.

Die Geschwindigkeit mit der eine Flüssigkeit durch ein Hydrauliksystem strömt ist wiederum abhängig von der Viskosität und der Schmierfähigkeit.

Der nächste zu betrachtende Punkt ist die Kompressibilität der verwendeten Flüssigkeiten. Während Luft unter Druck sein Volumen beträchtlich verringern kann bleiben Öl und Wasser nahezu ohne nennenswerten Volumenverlust unter Druck. Allerdings sind in der Praxis immer Lufteinschlüsse im Fluid und das muss beachtet werden.

Mit der Geschwindigkeit und der Kompressibilität von Flüssigkeiten kommen weitere Einflussgrößen hinzu.

Die Strömung von Hydrauliköl hat entscheidenden Einfluss auf z.B. den Energieverlust einer Hydraulikanlage.

 

Fluidtechnik

Lubrication – Important maintenance

Lubrication – Important maintenance

Maintenance – lubrication according to plan

In order for rolling bearings to function reliably, adequate lubrication is absolutely important. The lubricant prevents wear and protects the surfaces against corrosion and dirt. Therefore, the choice of a suitable lubricant and lubrication process is as important as proper maintenance for each individual storage case.

A wide range of greases, oil lubricants and other lubricants are available for the lubrication of rolling bearings. The choice of a suitable lubricant and a suitable lubrication process depends primarily on the requirements such as the required speed or the permissible operating temperature. However, other operating conditions, e.g. Vibrations and stresses can affect the selection.

The most favorable operating temperature is found when only the lubricant quantity, which is just sufficient for reliable lubrication, is supplied to the bearing. However, if the lubricant has to fulfill additional tasks, such as sealing, rinsing or heat removal, larger amounts of lubricant may also be required.

The lubricant in a bearing gradually loses its lubricity in the course of the operating time as a result of the constant mechanical stress, the aging and the increasing contamination. Therefore the lubricant must be supplemented or renewed from time to time, and the oil must be filtered or replaced at certain intervals during oil lubrication.

A lubrication system must be checked regularly for its functions. Daily inspections of the bearings and the lubrication system ensure low wear and tear, inspections of the lubrication points and the entire lubrication system are part of the everyday routine of every maintenance and form an important part of the maintenance work.

Lubrication oil and hydraulic oil control are part of the daily work of maintenance.

A short inspection can be carried out by means of checklists and a daily inspection at each facility.

All bearings and moving parts of a machine or system must be adequately lubricated in order to prevent a machine failure. In the case of the inspections, the actual wear is additionally determined and documented. In this way, it is possible to respond quickly if necessary and components are kept ready for replacement.

In a maintenance plan, all information on the lubricants, lubrication cycles and all other necessary tasks should be clearly described. Photos can easily visualize the states and components. The work is carried out and documented according to plan.

Checkinstruktion-

  • Check the bearings for audible damage and heat. Bearings make noisy noises and produce „overflow frequencies“ as the rolling bearings roll over the defective locations. You can detect this with a stethoscope.
  • Visual inspection of the gears whether damage is present, there is sufficient lubricant. Listen to the running gears. Defective or poorly adjusted gears produce dull noises and noticeable vibrations. This is where a stethoscope helps.
  • Visually inspect the hydraulic oil for signs of aging, dirt and foreign matter, deposits and water content. Take a sample if necessary and have it analyzed in the laboratory. Check the level switch, temperature monitoring, filter monitoring and other electrical connections and lines on the unit.
  • Check the lubrication unit for leaks and visible damage. Check the level switch and the temperature. Check the monitoring for safe operation. Noise emission of the engine, clutch or pump, check for heat.
  • Have the hydraulic components, lubrication and pipes, manifolds and valves undergone regular testing? Check maintenance schedules of the machine.
Ausbildung der Instandhalter – Anlagen & Produktionsmaschinen

Ausbildung der Instandhalter – Anlagen & Produktionsmaschinen

Im Betrieb kennt und schätzt man ihn sehr, der Kollege Instandhalter ist immer bereit zu helfen und weiß Rat wenn die Maschine eine Störung hat.Er weiß Bescheid über fast alle Vorgänge und ist ein wichtiger Mitarbeiter im Betrieb, Wartungen und Inspektionen oder eine große Reparatur, ohne die Instandhalter ist es nicht möglich einen Betrieb aufrecht zu erhalten.

Wenn sie im Berufsverzeichnis unter I wie Instandhalter nachschauen werden sie ihn nicht finden, auch nicht unter S wie Servicetechniker.

Dieser wichtige Mitarbeiter hat eigentlich keine fachspezifische Ausbildung. Es werden meist Industriemechaniker, Mechatroniker und Betriebselektriker zu „Instandhaltern“ im Betrieb geformt. Oder aus der Produktion werden „Werker“ in die Abteilung Instandhaltung versetzt und eben als Instandhalter weiter gebildet und intern angelernt. Mittlerweile werden bei den Industriemechanikern eine Fachrichtung „Instandhaltung“ angeboten die aber allein nicht ausreichend ist.

Das ist für diesen wichtigen Fachbereich eine nicht ausreichende Grundlage um den Herausforderungen der Instandhaltung gerecht zu werden. Bedenkt man die neuen Techniken mit Industrie 4.0 und der Digitalisierung der Produktion und der Maschinen muss es im Berufsfeld der Instandhalter eine Neuerung geben.

Es muss einen Wandel geben da die Anforderungen und Funktionen der Instandhaltung sich weiter verändern. Heute muss die Programmierung, Visualisierung, Steuerungstechnik, Roboter, Automatisierung und Sensorik zusätzlich von der Instandhaltung abgedeckt werden. Die Basics und das Tagesgeschäft bleiben jedoch noch lange Zeit erhalten. Die neue digitale Technik steht in der Produktionshalle neben der jahrzehntealten, analogen Maschine und beide produzieren sicher und effizient. Reichte es früher aus ein guter Techniker in seinem „Fachbereich“ zu sein müssen die Instandhalter von heute viele fachübergreifende Themen abdecken.Die Instandhalter müssen neben „ihrem Fachbereich“ IT Kenntnisse, EDV Kenntnisse, Steuerungstechnik verknüpfter Systeme und viele weitere Fachkenntnisse aufweisen. Die Arbeiten in interdisziplinären Teams erfordert soziale Kompetenz und Empathie. Der Instandhalter ist ein kreativer, flexibler und abstrakt handelnder Mitarbeiter dessen Fähigkeiten für den Betrieb oftmals unterschätzt wird.

Das alles erfordert neue zielgerichtete Ausbildungsfelder die das Berufsbild der Instandhaltung abdecken und das Anforderungsprofil wiederspiegeln. Die Komplexität der heutigen Instandhaltung braucht Nachwuchs der schon in der Ausbildung die nötige Qualifikationen erwirbt.

  • Vorbereitung auf die Themen Industrie 4.0 und Instandhaltung 4.0
  • Vorbereitung auf die Digitalisierung der Produktion und der Instandhaltung
  • Moderne Instandhaltungssysteme –  Instandhaltungsstrategien                                        Prediktive Maintenance – Risk based maintenance – RCM – Lean Produktion – Preventive Instandhaltung – Condition based Maintenance – FMEA – FTA –

Die Ausbildung der Instandhalter und Servicetechniker kann schon während der Ausbildung auf die neuen Themen eingehen. „Lehre bring Ehre“ und sichert uns die nötigen Fachmänner und Frauen für die Zukunft in der Industrie.

Instandhaltung bedeutet sich immer wieder neuen Herausforderungen zu stellen. Keine Tage sind gleich und es stehen immer wieder sehr interessante Aufgaben an. Natürlich haben auch Instandhalter Routinen, die bei der Wartung und Inspektion sehr wichtig sind, doch die Abwechslung überwiegt. Die Instandhaltung macht z.B., anteilig an der Gesamtmitarbeiterzahl, die meisten Verbesserungsvorschläge für die technischen Anlagen. Sie optimieren, analysieren, werten Daten und Berichte aus und prognostizieren die Nutzungsdauer von Bauteilen und Maschinen. Es wird Zeit diesem Berufsfeld die nötige Grundlage zu verschaffen.

Aufgabenstellung Instandhaltungsleitung einer betrieblichen Instandhaltung produzierendes Unternehmen. Und diese Aufgaben müssen von den erfahrenen Kollegen teilweise in Vertretung oder als Schichtführer ebenfalls mit erledigt werden.

  • Festlegen der Instandhaltungsstrategie mit dem Management – Kurzfristig, Reaktion bei Störungen und Produktionsausfällen. Mittelfristig, vorbeugende Instandhaltung und Wartung. Langfristig, Revisionen, Retrofit, Projekte und Jahresplan I&R.
  • Planung der Instandhaltungskosten und Investitionen zusammen mit dem Management und Controlling auf Grundlage der I&R Strategie und des Jahresplans.
  • Planung der vorbeugenden Instandhaltungsmaßnahmen auf Basis der Jahresplanung, Budget und der I&R Strategie.
  • Planung der eigenen Kapazitäten, Ressourcen und Fremddienstleister für Projekte und I&R Maßnahmen. Ausfallrisiko der Anlagen und die Reaktionszeit der Instandhaltung berücksichtigen.
  • Planungen und Maßnahmen mit der AV und allen angeschlossenen Abteilungen abstimmen unter Berücksichtigung der Produktionszeiten und der Kosten. Interdisziplinäre Kommunikation über das Instandhaltungsgeschehen.
  • Ersatzteilmanagement und Lieferantenmanagement zusammen mit dem Einkauf planen und abstimmen.
  • Terminplanung für Instandhaltungsmaßnahmen erstellen. Terminverfolgung und Kontrolle des Arbeitsfortschritts von I&R Maßnahmen.
  • Aufträge vergeben, Kosten kontrollieren und Abrechnungen prüfen.
  • Dokumentieren der Instandhaltungsaktivitäten – Wissensdatenbank schaffen.
  • Auswertungen der Dokumentationen zur Schwachstellenanalyse.
  • Erstellen von Arbeitsanweisungen und Plänen auf Basis der Dokumentationen und Auswertungen. Investitionspläne, Eskalationspläne bei Störung und Produktionsausfall-Notfallpläne-Checklisten-Wartungspläne-Inspektionspläne Arbeitsanweisungen-Fehlerkataloge-Entstöranweisungen-Ersatzteilauswahl-Lasten und Pflichtenheft-Konformitätserklärungen-Statistiken etc.
  • Standardisierung von Maschinen und Ersatzteilen voran treiben.
  • Umweltschutzmaßnahen und Arbeitssicherheit, Einhaltung der gesetzlichen Vorgaben und Bestimmungen
  • Entstörungen – Wartungen – Inspektionen – Inbetriebnahmen – Revisionen – Retrofit

Und es sind sicher noch einige Aufgaben die ich hier nicht erwähnt habe, die allerdings ebenso wichtig sind wie all die anderen. Sie müssen die neueste innovative Technik ins Unternehmen einbringen und sind immer auf der Suche nach der modernsten Technik und Methoden zur Anlagenverbesserung.

Prediktive Maintenance

Anforderung-Arbeitsplan-Instandhaltungsleistungen

Hydrauliköl – Moderne Technik

Hydrauliköl – Moderne Technik

Eigenschaften von Flüssigkeiten die in der Hydraulik von Bedeutung sind.

Die Viskosität ist die Fließfähigkeit einer Flüssigkeit. Die Viskosität beschreibt die Wirkung der inneren Reibung eines Fluids, das bedeutet je größer die innere Reibung umso höher ist die Viskosität.

Die Viskosität ist ein Maß für die innere Reibung infolge des Widerstandes, der bei gegenseitiger Verschiebung benachbarter Schichten in einer Flüssigkeit auftritt.

Medien mit hoher Viskosität überwinden Widerstände im hydraulischen Systemen schwerer. Der Strömungswiderstand ist höher als bei niedriger Viskosität.

Eine weitere wichtige Eigenschaft des Hydrauliköls ist die Schmierfähigkeit. Die äußere Reibung ist ein Widerstand der vom Hydrauliköl überwunden werden muss.

Die Geschwindigkeit mit der eine Flüssigkeit durch ein Hydrauliksystem strömt ist wiederum abhängig von der Viskosität und der Schmierfähigkeit.

Der nächste zu betrachtende Punkt ist die Kompressibilität der verwendeten Flüssigkeiten. Während Luft unter Druck sein Volumen beträchtlich verringern kann bleiben Öl und Wasser nahezu ohne nennenswerten Volumenverlust unter Druck.

Mit der Geschwindigkeit und der Kompressibilität von Flüssigkeiten kommen weitere Einflussgrößen hinzu.

Die Strömung von Hydrauliköl hat entscheidenden Einfluss auf z.B. den Energieverlust einer Hydraulikanlage.

Wir unterscheiden zwei Strömungsarten.

  • Laminare Strömung
  • Turbulente Strömung

Die Reynoldsche Zahl Re hilft bei der groben Berechnung von Strömungsarten.

Durch turbulente Strömung kommt es zu Druckunterschieden einer Flüssigkeit zwischen zwei Punkten im Hydrauliksystem.

Es macht dabei keinen Unterschied ob sich die Punkte zwischen dem Einlass und dem Auslass eines Ventils oder auf zwei weit entfernten Punkten im Rohrleitungssystem befinden.

Dieser Druckunterschied sorgt für einen Druckabfall durch z.B. Querschnittsverengung, Änderung der Strömungsrichtung, eigentlich durch alles was den Förderstrom beeinflussen kann.

Diese Einflüsse sorgen dafür, dass ein Hydrauliksystemen die sogenannten Druckstöße hervorbringt.

Die Stöße sind Vibrationen im Hydrauliksystem, die von der Flüssigkeit ausgelöst werden, weil die Flüssigkeit versucht zurückzuströmen bzw. die Richtung ändert.

Die zwischen zwei Punkten eingeschlossene Flüssigkeit ist Stoßwellen mit sehr hohen Geschwindigkeiten ausgesetzt.

Diese Stoßwellen erzeugen dabei einen Druckanstieg der um ein vielfaches höher als der Betriebsdruck ist.

Diese Druckspitzen führen immer wieder zu Schäden an hydraulischen Bauteilen, Rohren und Schläuche, die Fortpflanzungsgeschwindigkeit des Druckes in Flüssigkeiten entspricht rund der dreifachen Schallgeschwindigkeit Die kinetische Energie einer Druckflüssigkeit darf bei den Berechnungen nicht vernachlässigt werden.

Kehrt die Flüssigkeit in den ruhenden Zustand zurück sind keine Druckspitzen mehr wahrzunehmen.

https://www.amazon.de/dp/197693818X

Hydraulic oil – Modern technology

Properties of liquids that are important in hydraulics.

The viscosity is the fluidity of a liquid. The viscosity describes the effect of the internal friction of a fluid, which means the greater the internal friction, the higher the viscosity.

Viscosity is a measure of the internal friction due to the resistance that occurs with mutual displacement of adjacent layers in a liquid.

High viscosity media overcome resistance in hydraulic systems heavier. The flow resistance is higher than at low viscosity.

Another important feature of hydraulic oil is its lubricity. The external friction is a resistance that must be overcome by the hydraulic oil.

The speed with which a liquid flows through a hydraulic system is in turn dependent on the viscosity and lubricity.

The next point to consider is the compressibility of the fluids used. While pressurized air can significantly reduce its volume, oil and water remain under pressure almost without significant volume loss.

With the speed and the compressibility of liquids further influencing factors are added.

The flow of hydraulic oil has a decisive influence on e.g. the energy loss of a hydraulic system.

We distinguish between two types of flow.

Laminar flow
Turbulent flow

The Reynolds number Re helps in the rough calculation of flow types.

Turbulent flow causes pressure differences between a liquid and two points in the hydraulic system.

It makes no difference whether the points are located between the inlet and the outlet of a valve or at two distant points in the piping system.

This pressure difference provides for a pressure drop by e.g. Cross-sectional constriction, change in the flow direction, actually by anything that can affect the flow rate.

These influences ensure that a hydraulic system produces the so-called pressure surges.

The shocks are vibrations in the hydraulic system that are triggered by the fluid because the fluid is trying to flow back or change direction.

The liquid trapped between two points is exposed to shock waves at very high speeds.

These shock waves generate a pressure increase which is many times higher than the operating pressure.

These pressure peaks repeatedly lead to damage to hydraulic components, pipes and hoses, the propagation speed of the pressure in liquids corresponds to around three times the speed of sound The kinetic energy of a pressure fluid must not be neglected in the calculations.

If the liquid returns to the dormant state no more pressure peaks are noticeable.

https://www.amazon.de/dp/197693818X

Autonomous maintenance by employees of production

Autonomous maintenance by employees of production

Maintenance M1 – Autonomous maintenance by employees of production

Through the independent maintenance of employees in production the machine utilization time and the system stability are improved.

The supervisors are trained extensively at the moment and now we must ensure that they exemplify their newly acquired knowledge to the staff. The 5S Process must be exemplified by the superiors and must be led the way with deeds and “visible success”.

Phase 1 – An essential component of autonomous maintenance are 5S/5A campaigns.

  • Sorting out / Sorting all unnecessary things
  • Cleanup / Systematic organization, determination of place, address and identification
  • Plants / workplace / cleanliness, cleaning is maintenance, checklists, discover defects
  • Orders / standardize, employees define standards, improve response times
  • Improve everything / self-discipline, improve standards, stabilize plant availability

By means of a simple identification and visualization of states, we are simplifying the activities.

Phase 2 – Plant identification, staff training, checklists, maintenance and inspection

  • Systematic marking of existing machines / plants / periphery
  • Standardized marking of existing assemblies / components / levels
  • Connections of scissors etc. Poka Yoke system prevents errors
  • Marking of operating materials, work equipment and handling
  • Setting of target values and system parameters
  • Creating standardized checklists for plant check
  • Creating a unified error code system, which standardizes the error messages

The breakdown of plants by address is also used to assign replacement parts. In short one-step lessons one site, the employees are instructed in detail with the tasks. On the basis of photo documentation the process is presented simply and clearly.

Assemblies like filling-shoes, shears, blades, belts, pumps, valves, switches and cylinders etc. are clearly marked. The replacement part assignment and ordering as well as the reaction time are positively influenced in this way. Hydraulic oil tanks, lubricant reservoirs and other levels of operating supplies are monitored by a min/max display.

The clear labeling of operation materials helps the operator to identify the right operation materials, so that not the incorrect oil or lubricant is refilled. The operation materials, work equipment such as oil cans and hoppers and of course the containers and components are clearly and distinctively marked.

Production relevant set points are defined and determined. Using simple labeling, the operator can quickly obtain some information on the state – pressure indicator manometer green OK – red NOT OK, temperature display, filter display etc.

In short and comprehensive checklists maintenance and routine works are described and visualized with photos. Control of filling levels of operation materials, lubrication works and plant checks by list set the foundation of autonomous maintenance.

The employees of production know their plants and should treat them responsibly, for example, as they maintain their cars. Each pilot must go through his checklists before starting and examine the aircraft and so every employee should perform a plant check to ensure that there are no unnecessary disturbances in production.

What are the advantages of autonomous maintenance by production staff?

More responsibility of employees leads to increased loyalty to the company and that is what improves the machine and the machine utilization time at the end.

The introduced standards ensure a quick response time to faults and additionally improve the machine availability.

Through the improved plant structure and higher machine availability the employees contribute to a greatly improved value. The cost savings contribute to improve the operating profit.

Machine parts that are used in production continuously should also be stored there. Of course the spare parts management should be left to the supervisor of the department.

  • Shears, spare parts
  • Filling shoes, preassembled
  • Finishing department, critical cylinder and other spare parts