Eigenschaften von Flüssigkeiten die in der Hydraulik von Bedeutung sind.

Die Viskosität ist die Fließfähigkeit einer Flüssigkeit. Die Viskosität beschreibt die Wirkung der inneren Reibung eines Fluids, das bedeutet je größer die innere Reibung umso höher ist die Viskosität.

Die Viskosität ist ein Maß für die innere Reibung infolge des Widerstandes, der bei gegenseitiger Verschiebung benachbarter Schichten in einer Flüssigkeit auftritt.

Medien mit hoher Viskosität überwinden Widerstände im hydraulischen Systemen schwerer. Der Strömungswiderstand ist höher als bei niedriger Viskosität.

Eine weitere wichtige Eigenschaft des Hydrauliköls ist die Schmierfähigkeit. Die äußere Reibung ist ein Widerstand der vom Hydrauliköl überwunden werden muss.

Die Geschwindigkeit mit der eine Flüssigkeit durch ein Hydrauliksystem strömt ist wiederum abhängig von der Viskosität und der Schmierfähigkeit.

Der nächste zu betrachtende Punkt ist die Kompressibilität der verwendeten Flüssigkeiten. Während Luft unter Druck sein Volumen beträchtlich verringern kann bleiben Öl und Wasser nahezu ohne nennenswerten Volumenverlust unter Druck.

Mit der Geschwindigkeit und der Kompressibilität von Flüssigkeiten kommen weitere Einflussgrößen hinzu.

Die Strömung von Hydrauliköl hat entscheidenden Einfluss auf z.B. den Energieverlust einer Hydraulikanlage.

Wir unterscheiden zwei Strömungsarten.

  • Laminare Strömung
  • Turbulente Strömung

Die Reynoldsche Zahl Re hilft bei der groben Berechnung von Strömungsarten.

Durch turbulente Strömung kommt es zu Druckunterschieden einer Flüssigkeit zwischen zwei Punkten im Hydrauliksystem.

Es macht dabei keinen Unterschied ob sich die Punkte zwischen dem Einlass und dem Auslass eines Ventils oder auf zwei weit entfernten Punkten im Rohrleitungssystem befinden.

Dieser Druckunterschied sorgt für einen Druckabfall durch z.B. Querschnittsverengung, Änderung der Strömungsrichtung, eigentlich durch alles was den Förderstrom beeinflussen kann.

Diese Einflüsse sorgen dafür, dass ein Hydrauliksystemen die sogenannten Druckstöße hervorbringt.

Die Stöße sind Vibrationen im Hydrauliksystem, die von der Flüssigkeit ausgelöst werden, weil die Flüssigkeit versucht zurückzuströmen bzw. die Richtung ändert.

Die zwischen zwei Punkten eingeschlossene Flüssigkeit ist Stoßwellen mit sehr hohen Geschwindigkeiten ausgesetzt.

Diese Stoßwellen erzeugen dabei einen Druckanstieg der um ein vielfaches höher als der Betriebsdruck ist.

Diese Druckspitzen führen immer wieder zu Schäden an hydraulischen Bauteilen, Rohren und Schläuche, die Fortpflanzungsgeschwindigkeit des Druckes in Flüssigkeiten entspricht rund der dreifachen Schallgeschwindigkeit Die kinetische Energie einer Druckflüssigkeit darf bei den Berechnungen nicht vernachlässigt werden.

Kehrt die Flüssigkeit in den ruhenden Zustand zurück sind keine Druckspitzen mehr wahrzunehmen.

Hydraulic oil – Modern technology

Properties of liquids that are important in hydraulics.

The viscosity is the fluidity of a liquid. The viscosity describes the effect of the internal friction of a fluid, which means the greater the internal friction, the higher the viscosity.

Viscosity is a measure of the internal friction due to the resistance that occurs with mutual displacement of adjacent layers in a liquid.

High viscosity media overcome resistance in hydraulic systems heavier. The flow resistance is higher than at low viscosity.

Another important feature of hydraulic oil is its lubricity. The external friction is a resistance that must be overcome by the hydraulic oil.

The speed with which a liquid flows through a hydraulic system is in turn dependent on the viscosity and lubricity.

The next point to consider is the compressibility of the fluids used. While pressurized air can significantly reduce its volume, oil and water remain under pressure almost without significant volume loss.

With the speed and the compressibility of liquids further influencing factors are added.

The flow of hydraulic oil has a decisive influence on e.g. the energy loss of a hydraulic system.

We distinguish between two types of flow.

Laminar flow
Turbulent flow

The Reynolds number Re helps in the rough calculation of flow types.

Turbulent flow causes pressure differences between a liquid and two points in the hydraulic system.

It makes no difference whether the points are located between the inlet and the outlet of a valve or at two distant points in the piping system.

This pressure difference provides for a pressure drop by e.g. Cross-sectional constriction, change in the flow direction, actually by anything that can affect the flow rate.

These influences ensure that a hydraulic system produces the so-called pressure surges.

The shocks are vibrations in the hydraulic system that are triggered by the fluid because the fluid is trying to flow back or change direction.

The liquid trapped between two points is exposed to shock waves at very high speeds.

These shock waves generate a pressure increase which is many times higher than the operating pressure.

These pressure peaks repeatedly lead to damage to hydraulic components, pipes and hoses, the propagation speed of the pressure in liquids corresponds to around three times the speed of sound The kinetic energy of a pressure fluid must not be neglected in the calculations.

If the liquid returns to the dormant state no more pressure peaks are noticeable.

Werbung